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A hydrodynamic model of the process of dispersion of bodies in high-velocity impacts is considered.
The depth of craters formed on impact of bodies against a semiinfinite surface is calculated. The
possibility of applying the results obtained to the superdeep-penetration effect is discussed.

As is known, pressures from several hundred thousand to a million atmospheres develop in a shock
wave for impact velocities of (1−10) km/sec. The unloading of bodies at such pressures is accompanied by
the dispersion, melting, and partial evaporation of the materials of the striker and the target. Thus, the esti-
mative values of the pressure in a shock wave obtained experimentally and required for the beginning of the
crushing, melting, total melting, and evaporation in unloading of a substance compressed by the shock wave
are given in [1], and the intervals of the impact velocities for which the "spraying" or sputtering of the striker
material is detected in microcraters by the strikers of different materials formed in soda-lime glass or fused
quartz are presented in [2]. These data indicate that the dispersion of bodies is a widespread phenomenon in
high-velocity impacts.

In this work, based on the hydrodynamic approach, we consider in a one-dimensional approximation
the threshold velocities of impact for which the dispersion of the striker and target materials occurs and cal-
culate the depth of a crater that is formed on impact of a body against the target surface.

Formulation of the Problem. Basic Relations on the Shock-Wave Front. Let us assume that the
striker has the shape of a cylinder with a diameter exceeding the height and the target is a semibounded
body. At the time of contact of the striker with the target surface, from the contact boundary there emerge
two shock waves, one of which runs over the striker material and the other of which runs over the target
material. We can consider these waves as being plane in the central part of the compression zone of the
striker and target materials.

In what follows, we will denote the mechanical characteristics of the striker and target materials by
indices 1 and 2 respectively and their values at atmospheric pressure additionally by the index 0.

Figure 1 shows schematically the penetration of the striker into the target when the shock wave has
not yet reached the rear side of the striker; lateral expansions of the bodies are disregarded.

The laws of conservation of matter, momentum, and energy on the shock-wave front can be written
in the form [3]

ρi0Di = ρi (Di − ui) ;   ps = ρiDiui ;   
psui

ρi0Di
 = Ei − E0 + 

ui
2

2
 , (1)

where Ei = cviTi (i = 1, 2).
The velocities u1 and u2 are related by the relation
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u1 + u2 = V . (2)

To close the system of equations (1)−(2), we must prescribe the equation of state of a substance be-
hind the shock-wave front. For comparatively small amplitudes of pressure in the shock wave that are not
considered here, the difference of the shock adiabat from the Poisson adiabat is slight, as is known [4]. For
a number of metals we can use the simplest equation of an adiabat of the form

p = A 








ρ
ρ0





n

 − 1



 , (3)

where A and n are constants related by the relation An = ρ0C0
2 and C0 = (K ⁄ ρ0)

1⁄2 is the velocity of propaga-

tion of plastic waves for p = 0. From the data of [4], A = 4.5⋅1010 for iron, 2.5⋅1010 for copper, and

2.03⋅1010 N/m2 for Duralumin; for metals, the exponent n can be set equal to 4.
The system of equations (1)−(3) yields the following relations:

V
__

 2 = p
_

s (1 − θ1) 



1 + √ρ10θ2

ρ20θ1

 




2

 ;

u
_

1 = (p
_

sθ1)
1 ⁄ 2 ,   u

_
2 = 





ρ10

ρ20
 p
_

sθ2




1 ⁄ 2

 ;   D
__

1 = 
u
_

1

θ1
 ,   D

__
2 = 

u
_

2

θ2
 ;

θ1 = 1 − (1 + n1p
_

s)
−1 ⁄ n1 ,   θ2 = 1 − 




1 + 

K1

K2
 n2p
_

s




−1 ⁄ n2

 ;   ∆T1 = 
V2

2cv1
 



1 + √ρ10

ρ20

 
θ2

θ1

 




−2

 ,   ∆T2 = 
cv1

cv2
 ∆T1 .

(4)

Thus, if the velocity of impact is known, relation (4) makes it possible to find all parameters of the
medium in the shock wave.

In the case where the striker and the target are of the same material, the first equality of the system
takes on the form

Fig. 1. Scheme of penetration of the striker into the target: 1) undis-
turbed surface of the target; 2) front of a reflected shock wave; 3) con-
tact boundary; 4) front of a direct shock wave.

Fig. 2. Dimensionless pressure in the shock wave vs. ratio V
__

 = V ⁄ c10 for
values of the exponent n from 1 to 5 (numbers at the curves).
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V
__

 2 = 4p
_

s 1 − (1 + np
_

s)
−1 ⁄ n

  .
(5)

Figure 2 gives the curves of p
_

s as a function of V
__

 constructed from formula (5) for different values
of n. These curves are universal in the region of applicability of the equation of state (3).

Calculation of the Parameters of Flow in the Zone of Unloading of the Striker Material. The
first shock wave that moves over the striker material reaches its surface at the instant of time

t = t0 = h1
 ⁄ D1 ,   h1 = 

ρ10

ρ1
 h0 = h0 (1 + n1p

_
s)
−1 ⁄ n1 .

Simultaneously, the second shock wave goes deeper into the target to the distance

h2 = D2t0 = 
D2

D1
 h1 .

From the instant of time t = t0 the unloading of the striker material begins. The unloading wave is a
centered ordinary wave and is known to be described by the equations

V1 = 
2

n1 + 1
 



c1s + 

x

t



 ;   c1 = 

2

n1 + 1
 c1s − 

n1 − 1

n1 + 1
 
x

t
 , (6)

where the origin of coordinates is brought into coincidence with the target surface, while the x axis is guided
to the right, in the direction of motion of the substance.

The maximum velocity is attained for p′ = 0 and is determined from the formula

V1m = 
2c10

n1 − 1
 







1 + 

ps

A1





n1−1

2n1  − 1



 .

(7)

Downstream in the region of negative pressures the particles of the substance move by their own
momentum; the material is extended. In the extension zone, the following equality is fulfilled:

V1 = V1m − 
2

n1 − 1
 (c10 − c1) .

Taking into account that  p′  << A in this zone, we can rewrite the latter equality as

V1 = V1m − 
 p′
K1

 c10 .

If the tensile stress exceeds the tensile strength of the material, breaking or splitting off will occur at
the corresponding site, i.e., a platelet of material moving with a certain velocity will split off of the body’s
surface. This splitting-off will be large-scale in nature with increase in the pressure ps, i.e., the body will be
dispersed.

The cross section in which the tensile stress attains the tensile strength of the material will be re-
ferred to as the "dispersion front." In what follows, the parameters of flow on the "dispersion front" will be
denoted by asterisks. Then the condition of splitting-off or dispersion of the striker material will be written as

 ρ∗ V1
∗ 2 > σ1

∗  . (8)
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Immediately ahead of the "dispersion front" the velocity is equal to

V1
∗  = V1m = 

σ1
∗

K1
 c10 ,

(9)

and the "dispersion front" moves from right to left by the law

x∗  (t) = − 



c1s − 

n1 + 1

2
 V1

∗ 

 t = − M1c10t ,

where M1 = 
n1 + 1

n1 − 1
 − 

2
n1 − 1

 
c1s

c10
 + 

n1 + 1
2

 
σ1
+

K
.

The "dispersion front" lags behind the unloading-wave front that moves by the law xf = −cst; the gap
between these two velocities decreases with increase in the impact velocity.

Having substituted (9) into (8), we can write the dispersion condition for the striker material as

ps > p∗  = A1 
















1 + 

n1 − 1

2
 
σ1
∗

K1

 



1 + √ρ10K1

ρ1
∗ σ1

∗  











 
2n1

n1−1
 − 1










 ,

where p∗  is the threshold pressure in the shock wave for which the splitting-off begins.
Taking into account that the ratio σ1

∗  ⁄ K1 << 1, we can write

p∗  = σ1
∗  



1 + √ K1

σ1
∗  



 .

(10)

If we now substitute p
_
∗  = p∗  ⁄ K1 for p

_
s in the first equality of system (4), we obtain

V
__
∗
 2 = p

_
∗  1 − (1 + n1p

_
∗ )
−1 ⁄ n1

  











1 + √









  
ρ10

ρ20

 

1 − 



1 + n2p

_
∗  

K1

K2





−1 ⁄ n2

1 − (1 + n1p
_
∗ )
−1 ⁄ n1

 









  












2

 , (11)

where V
__
∗  = V∗

 ⁄ c10.
Table 1 gives the characteristics of a number of metals under normal conditions and the estimative

values of the impact velocity and the pressure in a shock wave required for splitting off in the case where
the striker and the target are made of the same material. The values of σ∗  are taken from [5]; the calculations

TABLE 1. Some Characteristics of Metals under Normal Conditions and Estimative Values of the Impact Velocity
and the Pressure in the Shock Wave Required for Splitting Off in Unloading of a Substance to Atmospheric
Pressure

Metal ρ0, g/cm3 c0, km/sec K, N/m2 σ∗ , N/m2 V*, km/sec Ps, N/m2

Aluminum 2.73 5.1 7.2⋅1010 2.65⋅109 1.83 1.65⋅1010

Iron 7.8 4.63 16.7⋅1010 1.66⋅109 1.60 1.83⋅1010

Copper 8.93 3.95 13.5⋅1010 1.60⋅109 0.93 1.63⋅1010

Lead 11.34 2.0 4.5⋅1010 0.50⋅109 0.41 0.52⋅1010
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were done by formulas (10) and (11). Table 2 gives the values of V∗  in the case where the materials of the
striker and the target are dissimilar.

Comparison of the data of Tables 1 and 2 shows that the quantity V∗  largely depends on the ratio of
the densities of the striker and target materials: the velocity V∗  increases with decrease in the density of the
target material.

For impact velocities higher than V∗  the striker is dispersed; further increase in the impact velocity
causes the striker material to melt and partially evaporate.

Calculation of the Depth of a Crater Formed on Impact of a Body against a Semiinfinite Tar-
get. Unloading of the target material begins when t > t1. The unloading wave in the target material is also
ordinarily centered and is described by the system of equations

V2 = 
2

n2 + 1
 



cs2 + 

x

t



 ;   c2 = 

2

n2 + 1
 cs2 − 

n2 − 1

n2 + 1
 
x
t
 ,   t > t1 . (12)

At the contact boundary, the relations p1 = p2 and V1 = V2 are fulfilled and the equation of motion
of the contact boundary has the form

dx
dt

 = 
2

n2 + 1
 

c2s + 

x
t



 . (13)

Taking into account that, according to Eq. (13), the integral curve must pass through the point with
coordinates t = t1 and x = −h1, we obtain

xê = t 




2

n2 − 1
 c2s − 




c1s + 

2

n2 − 1
 c2s




 




t1
t




n2−1

n2+1
 



 ,   t > t1 . (14)

The striker material is fully dispersed at the instant of time t = t2. To determine t2, we note that for
t = t2 the coordinate x determined by the first equation of system (6) must be equal to the coordinate xc

determined by equality (14). From this condition we have

t2 = t1 




n2 − 1

n2 + 1
 




c1s

c20
 + 

2

n2 − 1
 
c2s

c20









n2+1

n2−1

 . (15)

From the instant of time t = t2 the dispersion of the target material begins. At the same time, the
shock wave followed by the unloading wave with velocity of motion c2s + u2 > D2 continues to go deeper into
the target. The unloading wave catches up with the shock wave at the instant of time t = t3. The unloading
wave moves over the striker material for a time t1′  = h1

 ⁄ (c1s + u2) and over the target material for a time t2′

= (h2 + h3)/(c2s + u2); t1′  + t2′  = t3.
On the other hand, in the time t = t3 the shock wave reaches the depth h3 = D2t3 in the target. Thus,

we have the following relation:

TABLE 2. Estimative Values of the Impact Velocity Required for Splitting Off in Unloading of a Substance to
Atmospheric Pressure

Striker Aluminum Iron Lead Iron Copper Iron

Target Iron Aluminum Iron Lead Iron Copper

V∗ , km/sec 1.31 2.66 0.34 1.84 1.63 1.60
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h3

D2
 = 

h1

c1s + u2
 + 

h2 + h3

c2s + u2
 ,

which yields

h3 = D2 

c2s + u2

c1s + u2
 + 

D2

D1

c2s + u2 − D2
 h1 .

For t3 we obtain the following formula:

t3 = h1 

c2s + u2

c1s + u2
 + 

D2

D1

c2s + u2 − D2
 .

(16)

 Taking into account that the velocity of sound c2 in (12) is equal to

c2 = c20 

1 + n2 

p
K2





n2−1

2n2  ,

we can represent the analytical form of the pressure profile at the instant of time t = t3 as

p′ (x) = 
1

n2
 








2

n2 + 1
 
c2s

c20
 − 

n2 − 1

n2 + 1
 

x

c20t3





2n2

n2−1
 − 1




 .

When t > t3 this profile decays; the shock wave is damped. It seems impossible to analytically de-
scribe this stage of the process. However, further dispersion of the target material is independent of the nature
of decay of the shock wave.

The second wave reflected from the shock-wave front runs over the substance of the target (the sub-
stance is disturbed by the first unloading wave). In the zone between the shock-wave front and this reflected
wave, the pressure decreases rapidly, while the dispersion of the material will continue only until the re-
flected wave intersects the "dispersion front" of the target material. We denote the instant of meeting of these
two waves by t4. The wave reflected from the shock-wave front is a characteristic of the flow and is deter-
mined by the equation

dx
dt

 = V2 + c2 .

On the line of conjugation of the reflected wave with the first unloading wave, the values of V2 and
c2 are determined by equalities (12); hence the equation of the conjugation line can be written in the form

dx

dt
 = 

4

n2 + 1
 c2s + 

3 − n2

n2 + 1
 
x

t
 . (17)

The sought integral curve must pass though the point with coordinates (L, t3), where
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 L = h1 + h2 + h3 = h1 




1 + 

D2

D1




 (c2s + u2) + 





c2s + u2

c1s + u2
 − 1




 D2

c2s + u2 − D2
 . (18)

By integrating Eq. (17), we obtain

x = 
2

n2 − 1
 c2st − 

n2 + 1

n2 − 1
 L 




t

t3





3−n2

n2+1
 . (19)

The "dispersion front" of the target material moves by the law

x∗  (t) = − 



c2s − 

n2 + 1

2
 u2m




 t = − M2c20t , (20)

where

M2 = 
n2 + 1

n2 − 1
 − 

n2 + 1

2
 
σ2
∗

K2
 − 

2

n2 − 1
 c
_

2s ,   c
_

2s = 
c2s

c20
 . (21)

By equating the right-hand sides of equalities (19) and (20) we find t4:

t4 = t3 (c
_

2s)
(n2+1) ⁄ 2(n2−1) . (22)

Figure 3 shows the diagram of motion in the unloading zones of the striker and target materials in
the plane (x, t).

By the instant of time t = t4 the pressure in the unloading zone of the material becomes lower than
the limiting value p∗  and the dispersion of the target material ceases. The depth H1 to which the shock wave
penetrates by this instant of time is equal to

Fig. 3. Diagram of motion of the medium on the plane x0t: 0A = −c1st,
unloading-wave front in the striker; 0B = −M1c10t, front of the "disper-
sion wave" of the striker; AD = −c2st, unloading-wave front in the tar-
get; BE = −M2c20t, front of the "dispersion wave" of the target; CD =
−D2t, shock-wave front in the target; DE, reflected-wave front; x, coor-
dinate of the contact boundary.
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H1 = h2 + h3 + u2t0 = h0 









D2 

c2s + u2

c1s + u2
 + 

D2

D1

c2s + u2 − D2
 + 

D2 + u2

D1









  (1 + n1p
_

s)
−1 ⁄ n1 . (23)

Formula (23) has quite a definite physical meaning. If a plate is used as the target, for prescribed
values of the impact velocity V and the striker length h0 the quantity H is the critical thickness for which
splitting-off will occur on the rear side of the plate.

The maximum depth of a crater formed on impact of a body against a semi-infinite surface is equal
to the depth H to which the "dispersion front" penetrates by the instant of time t4:

H = M2c20 (t4 − t2) + u2t3 .

Substituting the values of t2, t3, and t4 into this equality, we obtain

H = 














M2 (c

_
2s)

n2+1

n2−1 + u
_

2




 

(c
_

2s + u
_

2)

(c
_

1s + u
_

2)
 + 

D
__

2

D
__

1

c
_

2s + u
_

2 − D
__

2

 − 
M2

c
_

1s

 




n2 − 1

n2 + 1
 



c
_

1s + 
2

n2 − 1
 c
_

2s




n2+1

n2−1
 



 










 h0 (1 + n1p

_
s)
−1 ⁄ n1 , (24)

where u
_

2 = u2
 ⁄ c20, c

_
1s = c1s

 ⁄ c10, c
_

2s = c2s
 ⁄ c20, D

__
1 = D1

 ⁄ c20, and D
__

2 = D2
 ⁄ c20.

In the case where the striker and the target are made of one material, formulas (23) and (24) take on
the form

H
__

1 = 
H1

h0
 = 




2D

(cs + u2 − D)
 + 1 + 

u2

D



 (1 + np

_
s)
−1 ⁄ n , (25)

H
__

 = 
H

h0

 = 







M (c

_
s)

n+1
n−1 + u

_
2




 

2

c
_

s + u
_

2 − D
__ − V (c

_
s)

2
n−1 




 (1 + np

_
s)
−1 ⁄ n . (26)

Table 3 gives the values of the dimensionless parameters of shock waves in the unloading zones of
the materials calculated from formulas (18)−(21) and (24) and (25) for different values of the impact velocity.
For pressures p > 1011 N/m2, the accuracy of the calculations is low since one can no longer disregard the
entropy change in the shock wave. Nonetheless, the data of the table in the region of high pressures also
convey correctly the dynamics of change in the medium’s parameters with increase in the impact velocity.

TABLE 3. Values of the Dimensionless Parameters in the Unloading Zone of a Material (the striker and the target
are of the same material)

V
__

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0

p
__

s 0.113 0.415 0.820 1.328 1.934 2.643 3.448 4.351

θ 0.089 0.217 0.305 0.369 0.419 0.458 0.490 0.517

c
__

s 1.150 1.443 1.725 1.995 2.254 2.505 2.746 2.980

D
__

1.124 1.382 1.639 1.897 2.148 2.402 2.653 2.901

M 0.90 0.705 0.516 0.336 0.164 –0.004 –0.165 –0.321

H
__

15.150 4.802 2.60 1.716 1.251 1.084 0.837 0.751

H
__

1 17.20 6.95 4.79 3.86 3.31 2.95 2.70 2.51
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The table shows that, in high-velocity impact, the depth of the crater formed on the target surface
decreases substantially with increase in the impact velocity. For impact velocities V > 2.4c0, the depth of the
crater becomes smaller than the linear dimensions of the striker.

This conclusion will hold qualitatively in consideration of a three-dimensional problem, too, since the
lateral expansion in the unloading zone of the substance can only cause the depth of penetration of the dis-
persion front into the target to decrease.

Thus, for impact velocities V > (12−13) km/sec, it is only the surface layers of the target that undergo
failure, whereas the deep-seated layers where the shock waves penetrate are relaxed without failure to the
material.

This phenomenon is found experimentally in [6] and bears the name "Leont’ev effect" in the foreign
literature. The effect is that for impact velocities V > 12 km/sec a sharp increase in the radius and a decrease
in the crater depth are observed; hollows are flattened out strongly. However, there are a number of publica-
tions (see, for example, [7]) in which the existence of the "Leont’ev effect" is doubted.

From the above investigations it is obvious that this effect has a real physical validity and is due to
the fact that, as the impact velocity increases, the duration of the dispersion of the target material decreases;
the failure cannot penetrate deep into the target, whereas the impact energy is mainly expended on the lateral
scattering of the dispersion products of the striker and target materials.

The critical thickness H1 of a sheet for which splitting-off can occur on the rear side also decreases
substantially with increase in the impact velocity.

The calculations show that for the same impact velocity the values of H and H1 depend mainly on
the ratio χ = (ρ10c10)/(ρ20c20): the values of H and H1 decrease with increase in χ.

We have considered above the process of dispersion of a substance in the unloading zone of the ma-
terial in the coordinate system moving with a mass velocity u2. As the calculations show, the relative velocity
of particles ur that are formed in dispersion of the substance is insignificant as compared to the impact veloc-
ity V and constitutes a value of the order of 0.1c0.

In a laboratory coordinate system, the dispersion products of the striker and target materials form a
high-power flow that penetrates into the target with an absolute velocity equal to (u2 − ur).

When t > t4 the stresses in the compression zone of the target material are relaxed comparatively
slowly under the head of this flow, and the process of dispersion ceases. With relaxation of the stresses, the
bottom of the pit moves outward toward the particle flux and, like a piston, forces the mass of dispersed
material out of the pit. This mass, expanding on the sides, destroys the pit walls; the upper walls are pre-
dominantly destroyed, whereas those at the bottom of the pit survive, forming a "shock funnel." This results
in the formation of a crater whose typical shape is described, for example, in [7]: in the central part, we
observe a hollow called the "shock funnel." The splitting-off zone that is a system of splitting-off shells ad-
jacent to the shock funnel is located around it; the splitting-off shells resemble corollas of flowers.

For impact velocities V > (12−13) km/sec, the depth of penetration of the dispersion into the target is
smaller than the linear dimensions of the striker. The lateral separation of the dispersion products of the sub-
stance leads to a strong flattening-out of the hollows; the diameter of the craters formed is much larger than
the depth.

Allowance for the lateral expansion of the substance in the shock wave cannot substantially alter the
character of crater formation.

From our viewpoint, the above model of dispersion of solid bodies in high-velocity impacts can be
applied to the phenomenon of the so-called superdeep-penetration effect. The essence of the latter is that, in
loading of a metal target with a dense high-velocity flux of powder particles (V ≈ 1−3 km/sec, ρ ≈ 0.5−5
g/cm3) a certain fraction of the particles (D1%) penetrates into the target to depths exceeding (103−104)d; the
loss of particle mass attains 95−99% by the time of retardation. Channels formed by the particles in penetra-
tion into the target collapse; numerous changes in the direction of particle motion occur [9, 8].
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This phenomenon can qualitatively be explained as follows. On impact of the flux of powder particles
against a metal surface, the latter is bent in the shape of a spherical recess. Numerous long fractures whose
direction deep into the target change occur from the recess surface in radial directions. The formation of such
fractures is described, for example, in [2]. The powder particles that are incandescent in the shock wave and
turn out to be just under such fractures are dispersed in the process of their unloading − the dispersion prod-
ucts are injected under high pressure into the channels of the fractures. The atoms and molecules of air and
other gases contained in the pores inside the powder and, in the adsorbed state, on the particle surface are
injected into the channels simultaneously with finely dispersed particles. At high temperatures these gases can
enter into chemical reactions with the substances of the target and the powder. Upon unloading of the target
material compressed by the shock wave, the channels of the fractures collapse; numerous carbonized powder
particles up to 10−4−10−5 cm or less in size turn out to be embedded in the target material. The lines along
which the channels collapse look like the tract (trajectory) of the particles. Clearly, such a viewpoint needs
experimental verification.

NOTATION

D1 and D2, velocity of the shock wave in the striker and target material; u1 and u2, mass velocity of
the substance of the striker and the target behind the shock-wave front; ρ10 and ρ20, initial density of the
striker and target material behind the shock-wave front; ρ1 and ρ2, density of the striker and target material
behind the shock-wave front; E1 and E2, internal energy of unit mass of the striker and the target; cv1 and
cv2, specific heat of the striker and the target at constant volume; V, impact velocity; p, pressure in the
metal; ρ, metal density; ρ0, metal density under normal conditions; n, adiabatic exponent; c0, velocity of
propagation of plastic waves in the metal for p = 0; K, compression modulus of the metal; V

__
 = V ⁄ c0, di-

mensionless impact velocity; ps, pressure behind the shock-wave front; p
_

s = ps
 ⁄ K1, dimensionless pressure in

the shock wave; θ1 and θ2, relative compression of the striker and target material; K1 and K2, compression
modulus of the striker and target material; u

_
1 and u

_
2, dimensionless mass velocity of flow in the striker and

the target; T1 and T2, absolute temperature of the striker and the target behind the shock-wave front; n1 and
n2, adiabatic exponent of the striker and target material; t, time; x, coordinate; h0, initial thickness of the
striker; h1, thickness of the striker compressed by the shock wave; t0, time of emergence of the shock wave
on the rear surface of the striker; h2, depth to which the shock wave penetrates into the target at the instant
t = t0; c1s and c2s, velocity of sound in the striker and target material behind the shock-wave front; V1 and
V1m, velocity and maximum velocity of flow of the striker material in its unloading; V1

∗ , flow velocity of the
substance of the striker at the site of formation of a break; ρ1

∗ , density of the target material at the site of its
break; σ1

∗ , splitting strength of the striker; x∗ (t), coordinate of the dispersion front; xf, coordinate of the un-
loading front; xc, coordinate of the contact boundary; p∗ , threshold pressure in the shock wave for which
splitting off occurs; V∗ , threshold velocity of impact for which splitting off on the rear side of the striker
begins; t1, instant of time at which the unloading wave emerges at the target surface; V2, flow velocity of
the substance of the target in the unloading wave; c2, velocity of sound in the unloading wave of the target
material; p1 and p2, pressure in the striker and target material on the contact boundary; t2, instant of time at
which the striker is totally dispersed; t1′  and t2′ , time for which the unloading wave moves over the striker
and target material; t3 = t1′  + t2′ , instant of time at which the unloading wave catches up with the shock wave
in the target; h3, depth at which the unloading wave catches up with the shock wave; p′, pressure in the
unloading wave; t4, instant of time at which the process of dispersion of the target material ceases; H, funnel
depth; H1, critical thickness of the sheet for which splitting off occurs on its rear side; ur, velocity of pow-
der particles in a coordinate system tied to the compressed substance; d, diameter of powder particles.
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